Le langage C

Jean-Sébastien Coron

Université du Luxembourg

1 Les boucles

Boucles conditionnelles

- Il est possible de répéter plusieurs fois le même bloc d'instruction, en fonction du résultat d'un test.
- Instruction while (test) instruction
 - L'instruction s'exécute tant que le résultat du test est vrai.
 - L'instruction n'est pas exécutée si le résultat du test est faux la première fois.
- Instruction do (instruction) while (test)
 - L'instruction est exécutée une fois, puis répétée si le résultat du test est vrai.
 - L'instruction est exécutée au moins une fois.

Instruction while

- Exemple: affiche les entiers de 1 à 10.

```
#include <stdio.h>
int main()
{
   int i=1;
   while(i<=10)
   {
      printf("%d\n",i);
      i=i+1;
   }
}
```

Instruction do while

 $-\,$ Exemple: on demande à l'utilisateur d'entrer un entier qui doit être positif, sinon on repose la question.

```
#include <stdio.h>
int main()
{
   int a;
   do
   {
     printf("Entrez un nombre positif.\n");
     scanf("%d",&a);
} while (a<0);
}</pre>
```

Boucle for

- Une boucle for permet de répéter une instruction plusieurs fois, à l'aide d'une variable de contrôle.
 - for(init;test;itération) opération;
 - init: initialiser la variable de contrôle.
 - test: test de la variable de contrôle
 - itération: opération sur la variable de contrôle
 - opération: opération de la boucle
- Exemple: afficher les entiers de 1 à 10.
 - for (i=1;i<=10;i=i+1)
 printf("%d\n",i);</pre>

Boucle for

- Syntaxe:
 - for(init;test;itération) opération;
- Séquence d'opération :
 - init
 test:si test=faux, saut à fin du for
 opération
 itération
 retour à test
 fin du for
- Exemple: somme des entiers de 1 à 10 :
 - s=0; for (i=1;i<=10;i=i+1) s=s+i;

Variable de contrôle

- On peut aussi décrémenter la variable :
 - Boucle affichant les nombres de 10 à 0 : for (i=10;i>=0;i=i-1) printf("%d\n",i);
- Explication :
 - \bullet i=10: valeur initiale de la variable i
 - $\bullet\,$ i>=0: la boucle continue tant que i>=0
 - i=i-1: après chaque exécution de l'opération de la boucle, la variable i est décrémentée.

Boucle For

- Exemple:
 - for (i=0;i<6;i=i+1)
 printf("%d\n",i);</pre>
 - La boucle affiche 0,1,2,3,4,5.
 - Elle commence à i=0, vérifie que i<6, et affiche 0 à l'écran.
 - La boucle continue avec i=1,2,3,4,5.
 - Lorsque i=6, la condition i<6 n'est plus réalisée, et on sort de la boucle.
 - * La valeur 6 n'est pas affichée.
 - * La boucle s'est exécutée en tout 6 fois, pour i=0,1,2,3,4,5

Exemple

- On veut calculer $a\cdot b$ en calculant

$$a \cdot b = b + \ldots + b$$

- Avec une boucle :

```
int mult(int a,int b)
{
   int i,c=0;
   for(i=0;i<a;i++)
   {
     c=c+b;
   }
   return c;
}</pre>
```

- 1) On définit $c=a^b$ (dire a puissance b ou a exposant b) comme $c=a*\cdots*a$, l'entier a apparaissant b fois dans la multiplication. Par exemple, $3^4=3*3*3*3=81$. Ecrire un programme qui demande d'entrer deux entiers a et b et qui affiche a^b .
- 2) On définit n! (dire factorielle n) comme $n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$. Par exemple, 5! = 5*4*3*2*1 = 120. Ecrire un programme qui demande d'entrer n et qui affiche n!.

Attention

- Toujours vérifier que la boucle se termine :
 - Incorrect: for (i=0;i<6;i=i-1)
- Si nécessaire, utiliser printf dans la boucle pour vérifier la valeur du compteur.
- Bien compter le nombre d'exécutions de la boucle :
 - for(i=0;i<10;i++) exécute 10 fois la boucle (i de 0 à 9)
 - for(i=0;i<=10;i++) exécute 11 fois la boucle (i de 0 à 10)
 - for(i=1;i<10;i++) exécute 9 fois la boucle (i de 1 à 9)

Utilisation de for

- On utilise généralement une boucle for lorsqu'on souhaite exécuter une opération un nombre de fois connu à l'avance.
- Exemple: l'instruction va s'exécuter 10 fois.

```
int n=10;
int i;
for(i=0;i<n;i++)
{
     <instruction(i)>
}
```

- 3) Suite de Fibonacci. On définit la suite $u_0 = 1$, $u_1 = 1$, $u_n = u_{n-1} + u_{n-2}$ pour $n \ge 2$. Ecrire un programme qui calcule et affiche les n premiers termes de la suite de Fibonacci, pour un n donné. Modifier le programme pour faire afficher les n premiers termes de la suite réelle $v_n = u_{n+1}/u_n$. Que constatez-vous ?
- 4) Ecrire un programme affichant la décomposition binaire d'un nombre, en commençant par le bit de poids faible.
- 5) On dit qu'un entier est un nombre premier si ses seuls diviseurs sont 1 et lui-même. Par exemple, 1, 2, 3, 5, 7, 11 sont des nombres premiers, mais 15 = 3 * 5 n'est pas un nombre premier.

Ecrire un programme qui demande un nombre à l'utilisateur et détermine si ce nombre est premier ou pas. Modifiez votre programme pour afficher la liste des nombres premiers de 1 à 100, et déterminez combien il y en a.